Total No. of Questions: 8]		SEAT No. :
PD4208	<i>S S S S S S S S S S</i>	[Total No. of Pages : 2
12 1200		[
[0	6403]-1	
T.E. (Civ	il Engineering	g)
HYDROLOGY AND WATE	R RESOURC	CES ENGINEERING
(2019 Pattern) (S	Semester - V	(301001)
	,	
Time: 2½ Hours]		[Max. Marks : 70
Instructions to the cardidates:		\sim
1) Answers O.No 1 or Q.No 2, Q.No	3 or Q.No 4, Q.No	o 5 or Q.No 6, Q.No 7 or Q.No 8.
2) Neat diagrams must be drawn wi	herever necessary.	.6° ^
3) Figures to the right indicate full	! marks.	\$ 1 m
4) Assume suitable data, if necessar	ry.	:0
Q1) a) State the various methods	to estimate the	e magnitude of peak flood.
Explain any two methods in		[2+7]
b) Estimate the maximum floo		
an appropriate empirical for		[9]
Consider Dickens constant		
i) $A_1 = 40.5 \text{ km}^2$, (for We		
ii) $A_2 = 40.5 \text{ km}^2$, (in Gar		, ivianarasina).
iii) $A_3 = 40.5 \text{ km}^2$, (in the		Гатіl Nadu).
113 1010 11111 (2010)	A derivery deriver,	- Lamin 1 (a.a.a.).
	OR	
Q2) a) State and explain Q-GIS so	/	ion in hydrology (watershed
delineation).	11	2[8]
	uting? Explain N	Muskingum method in detail.
o) what is hydrologic food to	ating: Explain i	[3+7]
8.		
(Q3) a) Explain in brief various inve	estigations requi	red for reservoir planning.[7]

b) State the significance of mass curve. Explain the step by step procedure for fixation of reservoir capacity using annual inflow and outflow. [2+8]

OR

- Q4) a) Explain with neat sketch the significance of reservoir sedimentation and trap efficiency. [5+5]
 - b) What are the different losses which take place from the reservoir. Explain the measures to control this losses. [3+4]

Q5) a) Derive the formula to calculate discharge of a well in a confined aquifer and unconfined aquifer. [10] Write the preventive and curative measures of water logging. Explain tile b) drain method and also state the formula for spacing of tile drains. [3+5] **Q6**) a) A 30 cm well completely penetrates an unconfined aquifer of saturated depth 40m. After a long period of pumping at steady rate of 1500 lpm, the drawdown in two observation wells 25 and 75m from the pumping well were found to be 3.5 and 2 m respectively. [5+5]Determine the transmissivity of the aquifer. What is the drawdown at pumping well? ii) What is Participatory Irrigation Management (PIM)? What is b) co-operative water distribution systems [4+4]Write the advantages and disadvantages of PDN over conventional canal **Q7**) a) distribution network. [10] Differentiate between surface irrigation and subsurface irrigation and b) explain sprinkler irrigation in detail. OR State various methods of canal revenue collection and explain any two in **Q8**) a) detail. [10]* * * What is micro irrigation and what are its advantages compared other methods of irrigation. [3+4]

[6403]-1