PC-15

[6360]-15 T.E. (Civil)

HYDROLOGY AND WATER RESOURCES ENGINEERING

		LIGINEEKING	A >							
		(2019 Pattern) (Semester - I) (301001) (Insem)								
		O' O'	\mathbf{O}							
Time	e:1H	Iour] (Max. Mar	ks : 30							
Instr	ructio	ons to the candidates:								
	1)	Solve Q.No.1 or 2, 3 or 4, 5 or 6.								
	2)	Figures to the right indicate full marks.								
	3)	Draw heat diagram wherever necessary.								
	4)) Use of logarithmic table, slide rule and electronic pocket calculator a								
	5)	allowed.								
	3)	Assume suitable data if necessary, stating it clearly.								
	V									
Q1)	a)	Explain applications of hydrology.	[5]							
	b)	Explain National Institute of Hydrology (NIH).	[5]							
	,									
			9							
Q2)	a)	Explain drizzle form and rain form of precipitation.	[4]							
	b)	What is infiltration capacity: explain any two factors affecting infil	tration							
	- /	capacity.	×[3]							
		What are the difference with a da of management of an end day								
	C)	of class A evaporation pan	sketch							
		of class A evaporation pail.	[3]							
Q 3)	a)	Explain working of symphonic rainguage with neat sketch.	[5]							
~ `	1		r e 1							
	D)	Explain frontal and orographic precipitation.	[5]							
1		OR OR								
04)	a)	Explain BINNI'S method & BARLOW Tables for runoff estimat	ion.[6]							
2-7	1		[4]							
	D)	State and explain factors affecting runoff	[4]							
		(XO								
		9.4	<i>P.T.O</i> .							

[Total No. of Pages : 2

SEAT No. :

- Q5) a) State the assumptions made in Unit Hydrograph theory.
 - b) Given below are ordinates 6-h unit hydrograph for a catchment. Calculate the ordinates of the DRH due to a rainfall of 3.5 cm occurring in 6 hours.

		5							[/]
Time (h)	0.	3	6	9	12	15	18	24	
UH Ordinates nr/s	0.0	25	50	85	125	160	185	160	C
Time (h)	30	36	42	48	54	60	69	C	
UH Ordinates nivs	110	60	36	25	16	8	0		
C S		OR						2	

Q6) a) Explain velocity area method for stream gauging. Draw neat sketch. [7]

b) Explain components of typical hydrograph.

[3]

And the second s