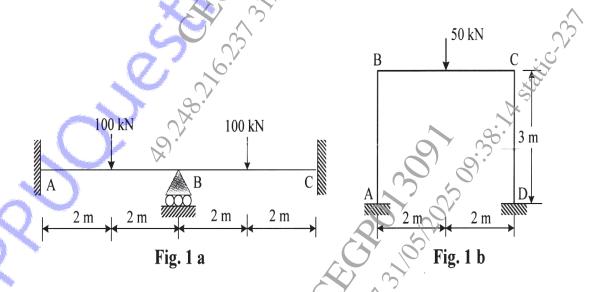
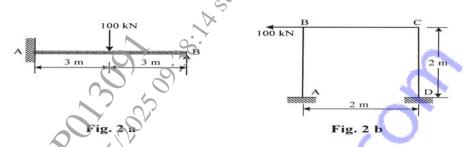
Total No. of Questions: 8]	SEAT No.:	
PD4050	[Total No. of Pa	ages

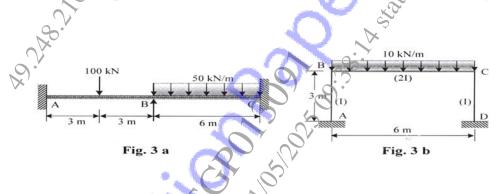

[6402]-9 S.E. (Civil) STRUCTURALANALYSIS (2019 Pattern) (Semester - IV) (201011)

Time : 2½ *Hours*]

Max. Marks: 70


Instructions to the cardidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Neat aigram must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data if necessary.
- 5) Use of electronic pocket calculator is allowed.
- 6) Use of cell phone is prohibited in the examination half.
- Q1) a) Analyze the continuous beam by lope deflection method as shown in Fig. 1a. [8]
 - b) Analyze the portal frame by slope deflection method as shown in Fig. 1 b. [10]



OR

- Analyze the propped cantilever by slope deflection method as shown in **Q2**) a) Fig. 2 a.
 - Analyze the portal frame by slope deflection method as shown in Fig. 2 b. b) [10]

- Analyze the continuous beam by moment distribution method as shown *Q3*) a) in Fig.3 a.
 - Analyze the portal frame by moment distribution as shown in Fig.3 b.[10] b)

- Analyze the propped cantilever by moment distribution method as shown **Q4**) a) in Fig.4 a and draw bending moment diagram.
 - Analyze the portal frame by moment distribution method as shown in b) [10] Fig.4 b.

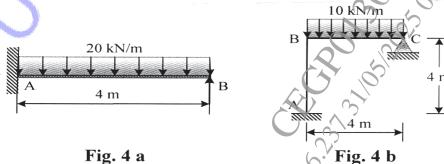
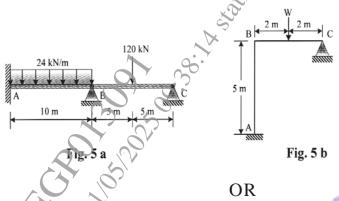
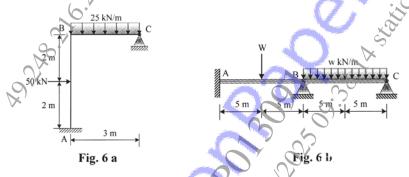
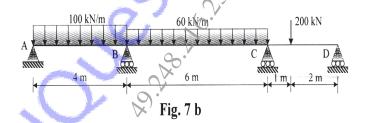




Fig. 4 a

- Analyze the continuous beam by stiffness method as shown in Fig. 5 a.[12] **Q5**) a)
 - Generate the stiffness matrix for the bent as shown in Fig. 5 b. b) [5]



- Analyze the frame by stiffness method as shown in Fig. 6 a. **Q6**) a) [12]
 - Generate the stiffness matrix for the beam as shown in Fig. 6 b. b) [5]

Q7) a) State the assumption of plastic analysis.

[5] Find the plastic moment for the beam loaded with ultimate loads as shown b) in Fig. 7 b.

OR

- State and explain plastic collapse load, plastic moment and plastic (0.8) a) section modulus. [5]
 - A beam of T (Flange: 120mm ×12mm and web168 mm×12mm) cross-section is subjected to sagging moment, find the shape factor if permissible yield stress in compression and tension is 230 MPa and 280 MPa respectively. [12]