Total No. of Questions: 8]		SEAT No.:
PD-4047	2	[Total No. of Pages : 3
	•.0	[10tal No. 01 Fages : 3

[6402]-6S.E. (Civil Engg.) GEOTECHNICAL ENGINEERING (2019 Pattern) (Semester - IV) (201008) (Theory) [Max. Marks : 70] *Time* : 2½ *Hours*] Instructions to the candidates Answer O.l or 0.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8. *2*) Neat diagrams must be drawn whenever necessary. 3) Figures to the right indicate full marks. Assume suitable data, if necessary and mention it clearly Use of non-programmable calculator is allowed. Describe the effect of compaction on properties of soil. **Q1**) a) [5] b) Explain how compaction control is achieved in the field using a proctor needle. [6] What is pressure bulb? Explain its significance and draw a neat sketch of c) pressure bulb for concentrated point load. [6] Explain Boussinesq's theory with neat sketch. State its Assumptions and **Q2**) a) formula for stress in soil by point load, with description of each term. [6] Differentiate between Light Compaction & Heavy Compaction test. [5] b) A load of 1000 kN acts as a point load at the surface of a soil mass. Estimate the stress at a point 3m below and 4m away from the point of action of the load by Boussinesq's formula. Compare the value with the result from Westergaards's theory. [6] Explain how shear tests are conducted with different drainage conditions? **Q3**) a) Explain vane shear test procedure with a neat sketch and formula. [6] Define total and effective stress. Determine the shear strength in terms of

- [5]
 - effective stress on a plane within a saturated soil mass at a point where the total normal stress is 200 KN/m² and the pore water pressure is 80 KN/m². The effective stress shear strength parameters for the soil are $c' = 16 \text{ KN/m}^2 \text{ and } \phi = 39^\circ.$ **[6]**

P.T.O.

Q4) a)	A sample of dry cohesionless soil was tested in a triaxial machine. It angle of internal shearing resistance was 36° & the confining pres 100kN/m², determine the deviator stress at which the sample failed.	sure
b)	Describe the procedure for Direct Shear Test.	[5]
c)	Explain briefly the procedure of conducting Unconfined Compres Test on Clayey soil sample. Draw Mohr's circle for the test.	sion [6]
Q 5) a)	Explain Rebhann's graphical method for determination of earth pres on retaining wall.	sure [6]
b)	Derive the expression for active state of pressure at any point for cohesionless backfill with uniform surcharge.	dry [6]
c)	A smooth vertical wall retains a level surface with $\gamma=18kN/m^3$, $\Phi=$ to a depth of 8 m. Draw the lateral pressure diagram and compute total active pressure in dry condition and when water table rises to GL. Assume $\gamma_{sat}=22kN/m^3$.	the
Q6) a)	Determine the relation for lateral earth pressure in active state submerged cohesionless backfill.	for [6]
b)	Discuss Culmann's graphical method for the determination of active e pressure.	arth
c)	In a cohesionless soil deposit having unit weight of 15 kN/m^3 and at of internal friction Φ of 30° . Determine the active and passive lat pressure intensities at depth of 10 m .	V. —
Q7) a)	Discuss "Taylor's Stability Number" for stability analysis of finite sle	ope. [6]
b)	Enlist factors of safety used in stability analysis of slopes. Calculate factor of safety w.r.t. cohesion of clay slope laid at 1 in 2 to a heigh 10 m, if the angle of internal friction $\Phi=10^\circ$ and $c=25kN/m^2$ $\gamma=19kN/m^3$. What will be the critical height of the slope in this Assume $S_n=0.064$ for $\Phi=10^\circ$.	nt of and
c)	Discuss the causes and remedial measures of Landslides.	[6]

[6402]-6

2

- Derive the expression for factor of safety for dry infinite slope in sandy **Q8**) a) soil. **[6]**
 - Explain with neat sketch different modes of slope failure. **[6]** b)
 - c)

A ARIAN ARIA

[6402]-6