Total No. of Questions : 8]

P-1481

SEAT No. :

[Total No. of Pages : 5

[6002] 108

S.E. (Civil)

CONCRETE TECHNOLOGY

(2019 Pattern) (Semester - IV) (201010)

Time : 2¹/₂ Hours]

[Max. Marks : 70

Instructions to the condidates:

- Answers Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8 1)
- Bold figures to the right indicate full marks. 2)
- Neat diagrams must be drawn wherever, necessary. 3)
- Use of non programmable calculator is allowed in the examination. **4**)
- Your answers will be valued as a whole. 5)
- If necessary assume suitable data and indicate clear **6**)
- Use of IS codes 10262,456 is not allowed. 7)

Calculate the compressive strength of following specimen, of concrete.[6] *Q1*) a)

Sr.		Crushing load in	
No.	Specimen and size	kN	
i)	Cube 1 : 150 mm × 150 mm × 150mm	600	
ii)	Cube 2 : 150 mm × 150 mm × 150mm	630	
iii)	Cube 3 : 150 mm × 150 mm × 150mm	625	

Calculate the split tensile strength of following specimen of concrete. [6] b)

	Sr.	Specimen and size	Crushing load in
	No.		kay.
	i	Cylinder 1 : 150mm diameter × 300 mm height) <u>(</u> 130
	ï	Cylinder 2 : 150mm diameter \times 300 mm height	140
\bigcirc	iii	Cylinder 3 : 150mm diameter × 300 mm height	150
c)	Writ	e short note on :	[6]
	i)	Shrinkage of concrete.	
	ii)	Creep of Concrete.	
		OR O	
		80.V	
		S.Y.	<i>P.T.O.</i>

Write short note on : c)

- Shrinkage of concrete. i)
- ii) Creep of Concrete.

Q2) a) Enlist non destructive tests for concrete. Explain core test along with its advantages and limitations. **[6]** Explain the principal of rebound hammer with neat sketch. Enlist the limitations b) of rebound hammer test. [6] Explain the stress-strain relationship of concrete with neat sketch. [6] c) Define concrete mix design and state objectives in mix design? *Q3*) a) [4] Enlist the factors influencing concrete mix design and explain any one of b) them. [5] Enlist various methods available for concrete mix design and explain the c) step by step procedure for concrete mix design IS 10262 method. [8] OR **04**) a) Design a concrete for grade M30 using IS code method for following [13] data. Parameter Details **M**30 Grade designation **Standard** deviations 5.00 Factor based on the grade 6.50 of concrete, X Type of cement OPC 53 grade conforming to IS 12269 Workability 75 mm (slump) Exposure conditions Moderate (for plain concrete Degree of supervision Good Maximum cement content $450 \, \text{kg/m}^3$ Type of aggregate Angular coarse aggregate Specific gravity of cement 3.00 Specific, gravity of coarse aggregate and fine aggregate Water absorption of coarse aggregate Water absorption of fine aggregate Free surface moisture for coarse aggregate Free surface moisture for fine aggregate

[6002]-108

2

Sieve Analysis

Course Aggregate							
	Analysis of coarse		A CONTRACTOR				
IS Sieve	aggrega	te fraction	Percentage of different fractions			Domoniza	
(mm)	Ι	II	E.	Π	Combined	Kemarks	
		0	(50%)	(50%)	(100%)		
20	100	100	50	50	100	Conforming	
10	2.80	78.30	1.4	39.15	40.55	to Table 7	
4.75	0	8,79	0	4.35	4.35	of IS 383	

Fine aggregate : Conforming to grading Zone II of Table 9 of IS 383

strengths of concrete

Water content per m³ of concrete for 50mm slump :

[6002]-108

	Sr.	Nominal maximum size of aggregate	Maximum water content	
	No.	(mm)	(kg/m ³)	
	i)	10	208	
	ii)	20	186	
	iii)	40 0?	165	
7		accurace a compact a require the values of	total accuración fan matan	

Volume of coarse aggregate per unit volume of total aggregate for water-cement/water-cementitious material ratio of 0.30 :

Sr.	Nominal Maximum	Volume of coarse aggregate per uni	t volume of
-----	-----------------	------------------------------------	-------------

No.	size of aggregate	total aggregate for different zones of fine			
	(mm)	aggregate			
	C' 20'	Zone III	Zone H	Zone I	
i)	6. 10	0.56	0.54	0.52	
ii)	12.5	0.58	0,56	0.54	
iii)	20	0.68	0.66	0.64	
C P	Approximate air content :				

Sr.	Nominal maximum size of 🔨	Entrapped air, as % of volume of	
No.	aggregate (mm)	concrete	
i)	10	1.0	
ii)	12.5	0.8	-
iii)	20	0.5	30

Minimum cement content, maximum W/C and minimum grade of concrete for different exposures with normal weight aggregates of 20mm nominal ,6

Smaximum size :

	Sr.	Exposure	Minimum cement	Maximum	Minimum grade of	
	No.	X	content (kg/m ³)	W/C	concrete	
	i)	Mild	300	0.55	M20	
	ii)	Moderate	300	0.50	M25	
	iii)	Severe	320	0.45	M30	
	iv)	Very severe	340	0,45	M35	
	v)	Extreme	360	0.40	M40	
	b) V	Vhat do you m	ean by :	6.	[4]	
6	5002]-108 4					

- i) Mean strength
- ii) Variance
- Standard deviation iii)
- iv) Coefficient of variation

Write short note on **Q5**) a)

- Ready mix concrete (RMC) i)
- Under water concreting ii)
- What do you meant by roller compacted concrete. Give real life b) examples/application of roller compacted concrete. [6]

[6]

[6]

- Discuss concrete vibrators and compaction equipments. c) [6] OR
- Define dightweight concrete? Classify the various types of lightweight **Q6**) a) concrete by their method of production. [6]
 - Discuss the self compacting concrete (SCC) with its advantages, material b) and examples of SCC mixes. [6]
 - Write short note on: [6] c)
 - Fiber reinforced concrete i)
 - ii) Geo-polymer concrete
- Discuss factors affecting the durability of concrete. **Q7**) a)

Х

- Discuss ingredients/factors influencing the permeability of concrete. b)
- Write short note on : c)
 - Attack by sea water on concrete i)
 - ii) Carbonation of concrete

OR

- [5] What are the symptoms and diagnosis of distress of concrete? **Q8**) a) Explain in detail corrosion monitoring technique for reinforcement and b preventive measures against corrosion. **[6]** What do you meant by retrofitting of concrete? Discuss the use of fiber **[6]**
 - reinforced polymer concrete for retrofitting × 10.20

[6002]-108