P596

SEAT No. : \square
[Total No. of Pages : 4
[5869]-209
S.E.(Civil)

STRUCTURAL ANALYSIS

(2019 Patternfo (Semester - IV) (201011)
Time: 2½ Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right indicate full marks.
4) Assume suitable data if necessary.
5) Use of electronic pocket calculator is allowed.
6) Use of cell phone is prohibited in the examination hall.

Q1) a) Analyze the beam shown in figure 1 by siope deflection method and draw BMD. Assume uniform flexural igidity.

Figure 1
b) Find the rotation $\mathrm{B}^{\circ}\left(\theta_{\mathrm{B}}\right)$ for the beam with uniform flexural tigidity as shown in figure 2.

Figure 2
OR

Q2) a) Analyze the frame shown in figure 3 by slope deflection method and draw BMD. Assume uniform flexural rigidity.

Figure 3
b) Analyse the bent shown in figure 4 by slope deflection method. Assume uniform flexural rigidity.

Figure, 4
Q3) a) Analyze the continuous beam ABC shown in figure 5 by momen't distribution method. Assume uniform flexural rigidity.

Figure 5
b) Analyse the continuous beam shown in figure 6 bymoment distribution method. Assume uniform flexural rigidity

Figure 6

Q4) a) Calculate moment at supports for the frame as shown in figure 7 by moment distribution method and draw BMD. Assume uniform flexural rigidity.

Figure 7
b) Define member stiffness; carry over moment and distribution factor. [6]

Q5) a) Analyse the continuous beam as shown in figure 8 by stiffness method. *Assume same flexural rigidity or members.

Figure 80
b) Write note on stiffness (method and write elements of displacement matrix for following figure.

Figure 9
OR

Q6) a) Explain degrees of freedom, stiffness
b) Analyse the frame shown in figure 10 by stiffness method and draw bending moment diagram.

Figure 10

Q7) a) Define plastic hinge, load factor and shape factof.
b) Athree span continuous beam ABCD is loaded with ultimate loads as Shown in figure 11. Determine the required giastic moment of resistance $\nabla_{\text {when }}$ the beam is of uniform section.

OR
Q8) a) Explain the idealizedstress strain curve for plastic analysis with diagram and state the assumption for plastic analysis.
b) Calculate shape factor for I section as per the dimension given : Top and bottom flange : 150 mm wide 2 and 9.4 mm deep Web : 6.7 mm wide and 281.2 mm deep.

