1) Answer Q. \quad or Q.2, Q. 3 or Q.4, Q. 5 or Q.6, Q. 7 or Q.8.
2) Figures ì bold to the right, indicate full marks.
3) If necessary, assume suitable data and indicate clearly.
4) Use of electronie pocket calculator is allowed.

Q1) a) A casttiron beam has an I-section with top flange $80 \mathrm{~mm} \times 40 \mathrm{~mm}$, web $120 \mathrm{~mm} \times 20 \mathrm{~mm}$ and bottom flange $160 \mathrm{~mm} \times 40 \mathrm{~mm}$. If the tensile stress is not to exceed $30 \mathrm{~N} / \mathrm{mm}^{2}$ and compressive stress $90 \mathrm{~N} / \mathrm{mm}^{2}$, what is the maximum uniformly distributedioad the beam can carry over *a simply supported beam span 6 m if thelarger flange is in tension. [9]
b) The unsymmetrical I-section has top flange $80 \mathrm{~mm} \times 20 \mathrm{~mm}$, web $200 \mathrm{~mm} \times 20 \mathrm{~mm}$ and bottom flange $160 \mathrm{~mm} \times 40 \mathrm{~mm}$ is subjected to shear force of 40 kN . Draw shear stress variation diagram across the depth.

Q2) a) A simply supported eeam is having 3.5 m long span. Find the maximum udl it can carry. Its allowable compressive and tensile stress are 55 M pá and 30 Mp parespectively. Draw a diagram showing the variation of stress over mid span section of the beam.

Figure 1
b) A steel beam of I section, 200 mm deep and 160 mm wide has 16 mm thick flange and 10 mm thick web. The beam is subjected to a shear force of 200 kN . Determine the stress distribution over the beam section if'the web of the beam is kept horizontai.

Q3) a) Calculate the maximum intensity of shear stress induced and the angle of twist produced in degrees in solid shaft of 100 mm diameter, 10 m long, transmitting 112.5 kW at 150 rpni 'Take G $82 \mathrm{kN} / \mathrm{mm}^{2}$.
b) The stresses at point in a component are 150 Mpa and 50 Mpa both tensile. Find the intensities of normal, shear and resultant stresses on a plane inclined at an angle of 55° with the axis of major tensile stress. Also find the magnituade of the maximum shear stress in the component.[8]

OR
Q4) a) A solid shaft is subjected to a torque of $1.6 \mathrm{kN}-\mathrm{m}$. find the necessary diameter of the shiaft, if the allowable shear stress is 60 Mpa . The allowable twist is 1° far every 20 diameter length of the shaft. Take $C=80$ Gpa.[9]
b) At a pointin a strained material there is tensile stres 0 of $80 \mathrm{~N} / \mathrm{mm}^{2}$ on a horizontal plane and compressive stress at $40 \mathrm{~N} / \mathrm{mma}$-ona vertical plane. There is also a shear stress of $48 \mathrm{~N} / \mathrm{mm}^{2}$ oneach of these planes. Determine the planes of maximum shear stres at the point. Determine also the resultant stress on the planes of maximum shear stress.

Q5) a) Determine the buckling load for strut of tee section, the flange width being 100 mm . overall depth 80 mm and both flange and web 10 mm thick. The strut is 3 m long and is hisget at both ends. Take $\mathrm{E}=200 \mathrm{GNm}^{2}$.
b) A alloy hollow circularcolumn of 200 mm external and 160 mm internal diameter is 5 m lons and fiped at both ends. It is subjected to a load of 120 kN at an eccentricity of 20 mm from the axis. Determine the maximum stress induced in the column section. Take $\mathrm{E}=120 \mathrm{Gpa}$.

Q6) a) Find the Euler's ©rippling load for a hallow cylindrical steehcolumn of 38 mm external diameter and 2.5 mm thick. Take length of treicolumn as 2.3 m and hinged at its both ends. Take $\mathrm{E}=205 \mathrm{Gpa}$. Also determine crippling load by Rankine's formula using yield stress 335 Mpa and constant 1/7500.
b) A steel tube of external diameter 109 mmand internal diameter 100 mm is used as a column of length 5 m with both ends hinged. How much axial load can it carry with a factor of safety of 1.75 ? In case the same load acts with eccentricity of 12 mm , deternine the maximum horizontal deflection and the stress in the column. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

Q7) a) A simply supported beam of 6 m spanissubjected to a concentrated load of 18 kN at 4 m from the left support. Calculate :
i) the position and value
ii) slope at mid span
iii) deflection at the load point

Give $E=200$ Gpa, $I=-15^{\circ} \times 10^{6} \mathrm{~mm}^{4}$ use Macaulay's method
b) Determine the vertieal deflection using strain energy method of point C in the frame shown in figure 2. Given $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$ and $\mathrm{I}=30 \times 10^{6} \mathrm{~mm}^{4}$.[9]

Q8) a) A cantilever of beam $A B$ of length L and fixed at end A carries UDL of intensity $10 \mathrm{kN} / \mathrm{m}$ over the entire span 6 m and point load at free end 40 kN . Determine Slope at center and deflection at free end B of beam. Use Castingliano's theorem.
b) Determine the horizontaldisplacement of the joint C of the pin jointed frame as shown in figure 3. The cross section are of $A B$ is $500 \mathrm{~mm}^{2}$ and AC and BC is $750 \mathrm{~mm}^{2}$. Assume $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$.

