1) Answer Q. 10 Q Q.2, Q. 3 or Q.4, Q. 5 or Q.6, Q. 7 or Q.8.
2) Answers to the all questions should be written in single answer-book.
3) Neat diagrams must be drawn wherever necessary.
4) Figures to the right indicate full marks.
5) Use of loganithmic tables, slide rule, mollier charts, electronic pocket calculator (non programmable) and steam tables is allowed.
6) Assume suitable data, if necessary.

Q1) a) Whater is flowing through a pipe of diameter 30 cm at a velocity of 4.1 xims. Find the velocity of oil flowingin anotmer pipe of diameter 10 cm , if the condition of dynamic similariey is satisfied between two pipes. The viscosity of oil water and oil is given as $\% .01$ poise and 0.025 poise. Take specific gravity of oil $=0.8$
b) Explain with neat sketch the phenomenon of "Boundary Layer Separation".
c) Explain with neat sketch vatious methods to control 'Boundary Layer Separation".
[6]

Q2) a) Determine the dimensions of the following terms:
i) Discharge
ii) Force
iii) Specific weight
iv) Kinematic viscosity
v) Dynamic viscosity
b) Explain the following with the help of neatsketch.
i) Laminar boundary layer
ii) Turbulent boundary layer and
iii) Laminar sub-layer
c) Explain the Buckingham's π-method of dimensional analysis.

Q3) a) A pipe of 110 mm diameter is carrying water. If the velocities at the pipe centre and 30 mm from the pipe centre are $2.1 \mathrm{~m} / \mathrm{s}$ and $1.6 \mathrm{~m} / \mathrm{s}$ respectively and flow in the pipeis turbulent. Calculate the shear friction velocity and wall shearing stress.
b) Explain in brief "Moody'siagram"
c) Three pipes of length $800 \mathrm{~m}, 500 \mathrm{~m}$, and 400 m and of diameter 500 mm , 400 mm , and 300 mm respectively are connected in series. These pipes are to be replaced-by a single pipe of length 1750 m . Find the diameten of the singlepipe.

OR

Q4) a) A fluid of iviscosity 8 poise and specific gravity 1.2 is flowing through a circular pipe of diameter 100 mm . The maximum shearstrêss at the pipe wall is, $212 \mathrm{~N} / \mathrm{m}^{2}$. Find:
[6]
i) ${ }^{\infty}$ The pressure gradient
(ii) The average velocity and
iii) Reynolds number of the flow
b) Explain the procedure of Hardy Cros's method for the analysis of pipe network.
c) Explain in brief the followingterns related with flow through pipes:
i) Major losses and
ii) Minor losses

Q5) a) Define the followingterms related with types of open channel flow:
ii) Unsteady flow
iii) Uniform flow
iv) Non-uniform flow
v) Laminar flow
vi) Turbulent flow
b) Derive the conditions for most economical trapezoidal channel section.
c) i) Find the specific energy of flowing water through a rectangular channel of width 5 m when the discharge of $10.1 \mathrm{~m}^{3} / \mathrm{s}$ and depth of water is 3 m .
ii) Find the critical depth and critical velocity of the water flowing through a rectangularchannel of width 5 m , when discharge is 15.5 $\mathrm{m}^{3} / \mathrm{s}$.

Q6) a) A trapezoidal channel has side slope of 1 horizontal to 2 vertical and slope of fats bed is 1 in 1500 . The area of the section is $40 \mathrm{~m}^{2}$. Find the dimensions for the channel sections if it is most economical as shown in Figure 6 as Take Chezy's constant as 80 .

Figure eras

b) Explain the Specific energy curve and Specific force diagram with neat sketch.
c) Explain in brief:
i) Classification of Channel
ii) Velocity distribution in open channel.

Q7) a) Experiments were conducted in wind tunnel with a wind speed of $50 \mathrm{~km} /$ hour on flat plate of size 2 m long and 1 m wide. The density of air is 1.16 $\mathrm{kg} / \mathrm{m}^{3}$. The coefficients of lift and drag are 076 a nd $\mathbb{Q} 16$ respectively. Determine:
i) the lift force
ii) the drag force
iii) the resultant force
iv) direction of resultant force and
v) power exerted by air on the plate
b) Explain Classification of channel botiom slopes with neat sketches. [6]
c) Explain with neat sketch:
i) Karman Vortex Trail
ii) Polar Diagram

Q8) a) A rectangular channelis 20 m wide and carries a discharge of $65 \mathrm{~m}^{3} / \mathrm{s}$. It is laid at a slope of 0.0001 . At a certain section along the channel length, the depth of flowis 2 m . How far U/S or D/S will the depth be 2.6 m ? Take $\mathrm{n}=0.02$. Use direct step method with two steps. Consider the depth increment in the interval of 0.1 m . Classify and sketch the profile. [10]
b) Explain in urief:
i) Magnus effect
ii) Types of drag
iii) Bluff body and
iv) Streamlined body

