\square

1) Question No. 1 is compulsory. Answer Q. 2 or $Q .3, Q .4$ or $Q .5, Q .6$ or $Q .7$, Q. 8 or $Q .9$
2) Figures to the right indicate full marks.
3) Non-programmable electronic pocket calculator is allowed.
4) Assume suitable data, if necessary.
5) Neai diagrams must be drawn wherever necessary.

Q1) Attempt thefóllowing.
a) If $\sum^{\infty} x y=2638, \bar{x}=14, \bar{y}=17, n=10$, then $\operatorname{cov}(x, y)$ is \qquad
$\begin{array}{ll}\text { ai) } & 24.2 \\ \text { - } i i i) ~ & 23.9\end{array}$
iii) $\quad 23.9$
25.8
b) If $\overline{\mathrm{F}}=\mathrm{r}^{2} \bar{r}$ then $\overline{\mathrm{F}}$ is
i) Constant
ii) Conservative
iii) Solenoidal
iv) None of these
c) For $\overline{\mathrm{F}}=x^{2} \hat{i}+x y \hat{j}$, the falue of $\int_{c} \overline{\mathrm{~F}}-d \bar{r}$ for curve $y^{2}=x$ joining points $\overbrace{0}$ $(0,0)$ and $(1,1)$ is
i) 1
iii) $\frac{3}{2}$
d) General solution of $\operatorname{PDE} \frac{\partial^{2} u}{\partial t^{2}}=4 \frac{\partial^{2} u}{\partial x^{2}}$ is
ii) $\frac{1}{3}$
iv) $\frac{2}{3}$
\qquad
i) $u(x, t)=\left(\mathrm{C}_{4} \cos m x+\mathrm{C}_{5} \sin \mathrm{~m} x\right) e^{4} \mathrm{n}^{2} t$
ii) $u(x, t)=\left(\mathrm{C}_{1} \cos m x+\mathrm{C}_{2} \sin \mathrm{~m} x\right)\left(\mathrm{C}_{3} \cos 2 m t+\mathrm{C}_{4} \sin 2 m t\right)$
iii) $u(x, y)=\left(\mathrm{C}_{1} \mathrm{e}^{m x}+\mathrm{C}_{2} \bar{e}^{m x}\right)\left(\mathrm{C}_{3} \cos m y+\mathrm{C}_{4} \sin m y\right)$
iv) $\left.u(x, y)=\left(\mathrm{C}_{1} \cos m x+\mathrm{C}_{2} \sin m x\right) \cup \mathrm{C}_{3} \mathrm{e}^{\mathrm{my}}+\mathrm{C}_{4} \bar{e}^{m y}\right)$
e) Coefficient of kurtosis β_{2} is given byo
i) $\frac{\mu_{4}}{\mu_{3}}$
ii) $\frac{\mu_{4}}{\mu_{2}^{2}}$
iii) $\frac{\mu_{3}}{\mu_{2}^{2}}$
iv) $\frac{\mu_{4}}{\mu_{2}^{3}}$
f) The dot prodactof two vectors $\bar{a} \& \bar{b}$ is defined as $\bar{a} \cdot \bar{b}=$ \qquad .[1]
i) $a b \cos \theta$
ii) $\mathrm{ab} \sin \theta$
iii) absin $\theta \hat{n}$
iv) $a b$

Q2) a) The fiyst fow moments of a distribution about value 5are 2, 20, 40 and 50. Fromgiven information find first four central noments. Also find coefficient of skewness and kurtosis.
b) Findthe coefficient of correlation for the following data.

x	y
$10 y$	y
14	12
18	24
22	6
26	30
30	36

c) Between 2. p.m and 3ep in theaverage number of phone calls per minute coming into compaty are 2 . Find probability that during one particular minute there will be 2 or less calls.

Q3) a) Given the following ifformation.

	Variable x	Variable y
Arithmetic mean χ	8.2	12.4
Standard deviation	6.2	20

Coefficient of correlation between $x \& y$ is 0.9 . Find the dibean regression estimate of x, given $y=10$.
b) On an average a box containing 10 articles is likely to have 2 detectives. If we consider a consignment of 100 boxes, how many of them are expected to have three or less detectives?
c) In a normal distribution 10% of items are under 40 and 5% are over 80 . Find mean and standard deviation of distribution. [Given : $\mathrm{A}(1.29)=0.4, \mathrm{~A}(1.65)=0.45]$?

Q4) a) Find the angle between otangents to the curve $\vec{r}=\left(t^{3}+2\right) \hat{i}+(4 t-2) \hat{j}+\left(2 t^{2}-6 t \hat{k}\right.$ at $t=0$ and $t=2$.
b) Find the directional derivative of $\phi=x^{2} y+x y z+z^{3}$ at (1, 2, -1) along normal to the surface $x^{2}+y^{2}+z^{2}=9$ at the point $(1,2,0)$.
c) Show that $\overrightarrow{\mathrm{F}}=\left(y e^{x y} \cos z\right) \hat{j}+\left(x e^{x y} \cos z\right) \hat{j}-e^{x y} \sin z \hat{k}$ is irrotational. Find corresponding scalar\& such that $\vec{F}=\nabla \phi$

Q5) a) If the drectional derivative of $\phi=\mathrm{a}(x+y)+\mathrm{b}(y+z)+\mathrm{c}(x+z)$ has maxirnun value 12 in the direction parallel to y axis. Find a, band c.[5]
b) Attempt anyone.
i) $\overrightarrow{\langle\times} \times\left(\frac{\vec{a} \times \vec{r}}{r^{3}}\right)=-\frac{\vec{a}}{r^{3}}+\frac{3(\vec{a} . \vec{r})}{r^{5}} \vec{r}$ (ii) $\nabla^{4} e^{r}=e^{r}+\frac{4}{r} e^{r}$
c) Show that the vector field $f(r) \vec{r}$ is always irrotational and determine $f(r)$ such that the field is solenoidal.

Q6) a) Let $\overline{\mathrm{F}}=\left(x y+y^{2}\right) \hat{i}+\operatorname{con}^{2} \hat{j}$ Is the work done along $y=x$ and $y=x^{2}$ from the common starting poinf $(0,0)$ to the common and point $(1,1)$, the same or different?
b) Evaluate $\iint \overline{\mathrm{F}} \hat{n} d \mathrm{~S}$ where $\overline{\mathrm{F}}=a x \hat{i}+b y \hat{j}+c z \hat{k}$ and S in the surface of the sphere $x^{2}+y^{2}+z^{2}=r^{2}$.
c) Apply stokes theorem to evaluate
$\int_{\mathrm{C}}[(x+y) d x+(2 x-z) d y+(y+z) d z]$
where C is the boundary of the triangle with vertices $(2,0,0),(0,3,0)$ and $(0,0,6)$.

Q7) a) Evaluate $\oint_{\mathrm{C}}[(3 x-y) d x+(2 x+y) d y]^{2}$ applying Green's lemma where C is the curve $x^{2}+y^{2}=a^{2}$. Is the wiork done the same along the curves C_{1} and C_{2} where C_{1} is the arc of C from $(0,-1)$ to $(0,1)$ clockwise and C_{2} is the arc of C from $(0,-1)$ to $(0,1)$ anti clockwise.
[5]
b) Let S be the surface of the sphere $(z+3)^{2}+x^{2}+y^{2}=4^{2}$ cut off by the plane $\mathrm{z}=-2$. Evarate $\iint_{\mathrm{D}} \bar{\nabla}^{\circ} \times \overline{\mathrm{F}} . d \overline{\mathrm{~S}}$ where

$$
\overline{\mathrm{F}}=(x+\rho) i+(y t z) \hat{j}+(z+x) \hat{k}
$$

c) Find the surface of equi pressure in case of steady motion of a liquid which hasyelocity potential $\phi=\log (x y z)$ and is under the action of force $\overline{\mathrm{F}}=y z \hat{i}+f z x \hat{j}+x y \hat{k}$. Use the equation
$\frac{\partial \bar{q}}{\partial \psi} \chi^{\prime} \frac{1}{2} \nabla q^{2}=-\nabla v-\frac{1}{p} \nabla p$ assigning appropiate meanings to the © yáriables.

Q8) a) Solve the equation, $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial x^{2} y}{}$, where $y(x, t)$ satisfies the following conditions,
i) $y(0, t)=0 \forall t$
ii) $y(\mathrm{~L}, t)=0 \forall t$
iii) $\left.\frac{\partial y}{\partial t}\right|_{t=0}=0 \forall x$
(v) $x(x, 0)=a \sin \left(\frac{\pi x}{\mathrm{~L}}\right)$
(b) Solve the Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$, witheonditions,
i) $u=0$ as $y \rightarrow \infty \forall x$
ii) $u=0$ at $x=0 \forall y$
iii) $u=0$ at $x=\pi \forall y$
iv) $u=u_{0}$ at $y=0,0<x<\pi$

> OR

Q9) a) A tightly stretched string with fixed ends $x=0$ and $x=l$ is initially at rest in its equilibrium position. If it isiset vibrating giving each point a velocity $3 x(l-x)$ for each $0<x<l$. Fighe the displacement $y(x, t)$.
b) Solve, $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$.
[7]
i) u is finite for all l
ii) $u(0 t)=0$
iii) $u(1, l)=0$
iv) $u(x, 8)=\frac{3 x}{l} 0 \leq x \leq 1$

