S.E. (Civil Engineering) MECHANICSOF STRUCTURE (2019 Pattern) (Sémester - III) (201002)

Time: $2^{1 ⁄ 2} 2$ Hours]
[Max. Marks: 70
Instructions to the candidates:

1) Solve Q. 1 or Q.2, Q. 3 or $Q .4, Q .5$ or Q.6, Q. 7 or Q.8.
2) Assume Suitable data, if necessary.
3) Use of Non Programmable calculator is allowed.

Q1) a) A simply supported beam of rectangular section 230 mm wide and 450 mm deep is subjected to uniformly distributed load of $60 \mathrm{kN} / \mathrm{m}$ on entire span of 4 m . Determine maximum bending stress and draw Bending stress Distribution diagram.
b) A'symmetric ' I ' section having flanges each of $150 \mathrm{~mm} \times 20 \mathrm{~mm}$ and \star web of $200 \mathrm{~mm} \times 20 \mathrm{~mm}$ is subjected to a shear force of 100 kN . Draw shear stress Distribution diagram of the beam.

Q2) a) A cantilever beam of span 1 m is subjected to two point loads, 100 kN at the free end and 50 kN at the centre of the beam. The beam is rectangular in section having widthof 300 mm and depth 600 mm . Determine maximum bending stress and draw Bending stress Distribution diagram.
b) A beam of ' T ' section having flange of $300 \mathrm{~mm} \times 50 \mathrm{~mm}$ and web of $400 \mathrm{~mm} \times 50 \mathrm{~mm}$, is sebjected to maximum shear force of 200 KN . Draw Shear stress Distribution diagram.

Q3) a) A solid aluminium shaft of 80 mm diameter is to be replaced by a hollow steel shaft of 80 mm outer diameter. The two shafts have same angle of twist per unit torque over the total length. If the shearmodulus of steel is three times the shear modulus of aluminum Find the inner diameter of the shaft.
b) The principal tensile stresses at a point are $85 \hat{\mathrm{~N}} / \mathrm{mm}^{2}$ and $55 \mathrm{~N} / \mathrm{mm}^{2}$. Find the normal, tangential and resultant stress on a plane at 25° with major principal plane. Also find the angle of obliquity.

Q4) a) Find maximum torque that can be safely applied to a shaft of 75 mm diameter. The permissible angle offtwist is 1° in a length of 4 m and permissible shear stress is 40 Mpa .
Take G $=80$ Gpa.
b) Direct stresses of $150 \mathrm{~N} / \mathrm{mm}^{2}$ and $80 \mathrm{~N} / \mathrm{mm}^{2}$, both tensile exists on two perpendicular pianes ate point in a body. Shear stress is also acting along with these direcstitresses.
If the greatest principal stress at the point is $200 \mathrm{~N} / \mathrm{mm}^{2}$, determine the magnitude of shear stress on the two planes. Also find the maximum shear stress attere point.

Q5) a) A steell colunn of 4 m long and of 100 mm diameter isffixed at one end and free arother end. Determine the crippling load by Euler's formula. Take $\mathrm{E}_{\mathrm{F}}=200 \mathrm{GPa}$.
b) Determine the safe load, an angle strut $75 \mathrm{~mm} * 55 \mathrm{~mm} \times 10 \mathrm{~mm}$ can carry. The length of the strut is 2 m and it is fixed at one end and hinged cat the other. Consider factory of safety as 1.5 Minimum radlics of gyration 12.5 mm and $6 \mathrm{c}=400 \mathrm{mpa}$ (crosting 8 tremi $)$
$\mathrm{a}=\frac{1}{7500}$
Use Rankine's formula.
[6]
c) Determine core section for ahollow rectangular column of external size $B \times D$ and internal size $b \times d$ respectively.

Q6) a) State assumptions and limitations of Euler's theory.
b) Determine ratio of Crippling load given by Euler's andrankine's formula for a circular column of 60 mm diameter and 2.5 m Ong. Take yield stress as 310 MPa .

Rankines constant $=1 / 7500$ and $\mathrm{E}=210 \mathrm{GPa}$.
c) A rectangular column $300 \mathrm{~mm} \times 250 \mathrm{~mm}$ is subjected to compressive load of 160 kN acting at an eccetricity of 45 mm in a plane bisecting 250 mm side.

Determine maximum and minimum stresses.

Q7) a) Determine slope and deflection for asimply supported beam loaded as shown below. Use Macaulay's method.

b) Determine the vertical displacement at joint ' C ' by using unit load method. Area of each members $500 \mathrm{~mm}^{2}$.

OR
Q8) a) Determine maximum slope and deflection for a simply supported beam shown in figure below.

Use Macaulay's method.

b) Determine vertical displacement at joint ' C ' using unit Load methơd.[9]

Area of each member is $600 \mathrm{~mm}^{2}$
$\angle E=200 \mathrm{GPa}$.
$4<$

$\underset{c}{ }$

