Total No. of Questions : 9]

**PA-1182** 

## [5925]-204 S.E. (Civil) **ENGINEERING MATHEMATICS - III**

(2019 Pattern) (Semester - III) (207001)

Time : 2<sup>1</sup>/<sub>2</sub> Hours | Instructions to the candidates:

- Question No. 1 is compulsory. 1)
- 2) Attempt Q.2 or Q.3, Q.4 or Q.5, Q.6 or Q.7, Q.8 or Q.9.
- Assume suitable data, if necessary. 3)
- Neat diagrams must be drawn wherever necessary. 4)
- Figures to the right indicates full marks. 5)
- 6) Use of electronic pocket calculator is allowed.

Q1) a) The pair of regression Linens are 1:8x - 10y + 66 = 0 and

$$L2: 40x - 18y = 214$$

i) L1 is the regression Line y on x

- ii) L1 is the regression line x on y.
- L2 is regression line y or x. iii)
- L1 and L2 is regression line *x* on *y*. iv)

**b**)

Vector along the direction of the line.

$$\frac{x-1}{2} = \frac{y+2}{1} = \frac{z-3}{5}$$
 is

$$i) \qquad \frac{\hat{i} - 2\hat{j} - 3\hat{k}}{\sqrt{14}}$$

iii) 
$$\frac{2\hat{i}+\hat{j}-5\hat{k}}{\sqrt{30}}$$

$$ii) \qquad \frac{i+2j+5k}{\sqrt{30}}$$

$$iv) \qquad \frac{2i+j+5k}{\sqrt{30}}$$

$$PTO.$$

[Max. Marks: 70

[Total No. of Pages : 7

[1]



c) Let 
$$X = B(7, 1/3)$$
 be the Binomial distribution with parameters  $n = 7$  and  $p = 1/3$ . Then  $p(x = 2) + p(x = 5)$  is [2]  
i)  $81/28$  [3]  $28/81$   
ii)  $7/81$  [2]  
i)  $10/81$   
d) If vector field  $f = (x + 3y)i + (y - 2z)j + (x + mz)k$  is solenoidal the value of m is [2]  
i)  $f = 1$  [2]  
i)  $f = 1$ 

A computer while calculating carrelation coefficient between two variables *Q2)* a) X and Y from 25 pairs of observations obtained the following results :  $n = 25, \Sigma X = 125, \Sigma X^2 = 650, \Sigma Y = 100, \Sigma Y^2 = 460, \Sigma XY = 508.$ 

> Later it was discovered that the values (X, Y) = (8, 12) was copied as (6, 14) and the value (8, 6) was copied as (6, 8). Obtain the correct value of the correlation coefficient. [5]

- In a normal distribution 31% of the items are under 45 and 8% are above b) 64. Find the mean and standard deviation of the distribution. Take Area (0 < z < 1.4) = 0.42 and Area (0 < z < 0.5) = 0.19 where z is the standard normal variate. [5]
- Verify at 5% level of significance and 4 degrees of freedom if the 1f c) distribution can be assumed to be poisson given:

|           |      |    | X  |    |   |   |   |
|-----------|------|----|----|----|---|---|---|
| # defects | 5:   | 00 | •1 | 2  | 3 | 4 | 5 |
| Frequence | ey : | 6  | 13 | 13 | 8 | 4 | 3 |

Take  $e^{-2} = 0.135$ . in the calculations round off the frequencies to the immediate higher integral value. Take  $\chi^2_{5,0.05} = 11.07$ [5]

OR

[5925]-204

| Roll No. : | R     | $ \mathbf{R}_2 $ | RC | R <sub>4</sub> | R <sub>5</sub> | R <sub>6</sub> | <b>R</b> <sub>7</sub> |  |  |  |  |
|------------|-------|------------------|----|----------------|----------------|----------------|-----------------------|--|--|--|--|
| Marks (A   | ): 40 | ) 44             | 28 | 30             | 44             | 36             | 30                    |  |  |  |  |
| Marks (B)  | ): 32 | 2 39             | 26 | 30             | 28             | 34             | 28                    |  |  |  |  |
|            |       |                  |    |                |                |                |                       |  |  |  |  |

Q3) a) Two examiners A and B award marks to seven students as follows:

Find the coefficient of correlation.

b) Assume the mean height of soldiers to be 68.22 inches with a variance of 10.8 inches square. How many soldiers in a regiment of 10,000 would you expect to be over 6 feet? Assume area (0 < z < 1.15) = 0.3749 where z is the standard normal variate. [5]

[5]

- c) Among 64 off springs of a certain cross between European horses 34 were red, 10 were black and 20 were white. According to a genetic model these numbers should be in the ratio 9:3:4. Is the data consistent with the model at 5% level of significance? Take  $\chi^2_{2;0.05} = 5.991$  [5]
- Q4) a) Find the angle between the tangents to the curve  $x=t, y=t^2, z=t^3 \neq \text{ at } t=1 \text{ and } t=-1$ b) If  $\vec{F}_1 = (y+z)\hat{i} + (z+x)\hat{j} + (x+y)\hat{k}$  and  $\vec{F}_2 = (x^2 - yz)\hat{i} + (y^2 - zx)\hat{j} + (z^2 - xy)\hat{k}$ then show that  $\vec{F}_1 \times \vec{F}_2$  is solenoidal. [5]
  - c) If the directional derivative of  $\phi = axy + byz + czx$  at (1, 1, 1) has maximum magnitude 4 in a direction of *x*-axis. Find *a*, *b* and *c*. [5]

OR

[5925]-204

- **Q5)** a) Find the directional derivative of  $\phi = xy + yz^2$  at the point (1, -1, 1) to wards point (2, 1, 2). [5]
  - b) Prove the following identities (any one) [5] i)  $\nabla \times (\vec{a} \times \vec{r}) = 2\vec{a}$ ii)  $\nabla (\vec{a} \cdot \vec{r}) = \vec{a}$ c) Show that  $\vec{F} = (xy^2 + xz^2)\hat{i} + (yx^2 + yz^2)\hat{j} + (zx^2 + zy^2)\hat{k}$  is irrotational. Find scalar  $\phi$  such that  $\vec{F} = \nabla \phi$ . [5]
- **Q6)** a) Evaluate  $\int_{c} \overline{F} \cdot d\overline{r}$  along the straight line joining points (0, 0, 0) and (2, 1, 3)where  $=\overline{F} = 3x^{2}\overline{i} + (2xz - y)\overline{j} + z\overline{k}$  [5]
  - b) Evaluate  $\iint_{S} (x\overline{i} + y\overline{j} + z\overline{k}) \cdot d\overline{s}$  over the surface of sphere  $x^{2} + y^{2} + z^{2} = 1$  [5]
  - c) Evaluate using Stoke's theorem  $\iint_{s} (\nabla \times \overline{F}) \cdot d\overline{s}$  where  $\overline{F} = y^{2}\overline{i} + z\overline{j} + xy\overline{k}$  and S is surface of paraboloid  $z = 4 - x^{2} - y^{2}(z \ge 0)$ . [5]

[5925]-204

5

OR

- Use Green's theorem to evaluate  $\int (2x^2 y^2) dx + (x^2 + y^2) dy$  where 'C' is **Q**7) a) boundary of area enclosed by the axis and circle  $x^2 + y^2 = 16, z = 0$ . [5]
  - Apply Stoke's theorem to evaluate  $\int \overline{F} \cdot d\overline{r}$  where  $\overline{F} = yz\overline{i} + zx\overline{j} + xy\overline{k}$  and b) S is upper part of sphere  $x^2 + y^2 + z^2 = 1$  above XOY plane. [5]
  - Evaluate  $\iint (xi + yj + z^2k) \cdot ds$ . Where S is the surface of cylinder  $x^2 + y^2 = 4$ c) bounded by planes z = 0 and z = 2. [5]
- A string stretched and fastened between two points L a part. Motion is **Q8)** a) started by displacing the string in the form  $y = a \sin \frac{\pi x}{L}$  from which it is released at time t = 0. Find the displacement y(x,t). [8]

Solve the one dimensional heat equation  $\frac{\partial y}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$  subject to conditions b)

[7]

- u is finite  $\forall t$ . i)
- u(0, t) = 0ii)
- $\mathbf{u}(\boldsymbol{\pi},\mathbf{t})=\mathbf{0},$ iii)
- $u(x, 0) = \pi x x^2 \quad 0 \le x \le \pi.$ iv)

[5925]-204

OR

- A tightly stretched string with fixed ends x = 0 and x = 1 is initially at rest **Q9)** a) in its equilibrium position is set to vibration by giving each point a velocity 3x(l-x) for  $0 \le x \le l$ . Find the displacement y(x, t) at any time *t*. [8]
  - An infinitely long uniform metal plate is enclosed between lines y = 0, b) and y = l for x > 0. The temperature is zero along the edges y = 0, y = l, .pera. and at infinity. If edge x = 0 is kept at a constant temperature  $v_0$ , Find the temperature distribution v(x, y). [7]

49.269.2000 19.000 19.20 1. A. Martin 2000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.000 19.0000 19.000 19.0000 19.000 19.000 19.000