[^0] 2

S.E. (Computer /A.I. \& D.S.) (Insem)

 DATA STRUCTURES AND ALGORITHMS (2019 Pattern)(Semester - II) (210252)Time : 1 Hour]
[Max. Marks : 30

Instructions to the candidates:

1) Solve 21 or Q.2, Q. 3 or Q.4.
2) Figures to the right side indicate full marks.
3) Assume suitable data, if necessary.

Q1) a) Wehrave a hash table of size 10 to store integerkeys, with hash function $h(x)=x \bmod 10$. Construct a hash table step by'step using linear probing without replacement strategy and insert elements in the order $31,3,4,21,61,6,71,8,9,25$. Calculate average number of comparisons required to search given data fromhashtable using linear probing without replacement.
b) Explain the concept of quadratic probing using example. What are the advantages and disad antages of quadratic probing over linear probing?
c) What is hashing? Explain the properties of good hash function with examples.

OR

Q2) a) Insert the following data in the hash table of size 10using linear probing with chaining by applying with replacement : $11,33,20,88,79,98,68$, $44,66,24$. Calculate average number of comparisons required to search given data from hash table.
b) Add following keys in hash table by applying extendible hashing mechanism. Assume capacity of each directory to store buckets is 3 . Keys are $10,20,15,12,25,30,7,11,08$.
c) Write short note on skip list.

Q3) a) Write an algorithm to delete a nodeffom Threaded binary Search Tree.
b) The following numbers are inserted into an empty binary search tree in the given order : G, C, B, A D D, E, F, I, H. Construct tree step by step. Represent the constructed tree using static memory allocation
c) Let characters a. b, c. di, e, f has probabilities $0.07,0.09,0.12,0.22$, $0.23,0.27$ respectively. Find an optimal Huffman code and draw Huffman tree.

OR

Q4) a) Construct threaded binary tree step by step if the preorder traversal is $\mathrm{G}, \mathrm{B}, \mathrm{D}, \mathrm{C}, \mathrm{A}, \mathrm{K}, \mathrm{Q}, \mathrm{P}, \mathrm{R} \&$ in-order traversal is $\mathrm{B}, \mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{G}, \mathrm{K}, \mathrm{P}, \mathrm{Q}$, R. Delete G and redraw a tree.
b) Wifte a non-recursive function to display datain Binary Search Tree in descending order.
c) Explain how to convert generaltree to binary tree with example.

[^0]: $$
 5
 $$

