Total No. of Questions: 8]

PA-1296

[5925]-327

[Total No. of Pages : 4

SEAT No. :

S.E. (Artificial Intelligence and Data Science) STATISTICS

(2019 Pattern) (Semester-IV) (217528)

Time : 2½ Hours]

Instructions to the candidates:

- 1) Q.1 or Q.2 Q 3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Assume suitable data, if necessary.
- 4) Figures to the right indicate full marks.

Q1) a) Calculate:

i)

Quartile deviation (Q.D.),

ii) Mean Deviation (M.D.) from mean, for the following data:

	Marks	0-10	10-20	20-30	30-40	$40_{7}50$	50-60	60-70
0	No. of				0	$\hat{\mathbf{n}}$		
~		6	5	0		S_{7}	6	o
	students	0	3	0	7 2	· /	0	0

b) The variables X and Y are connected by the equation aX + bY + c = 0. Show that the correlation between them is -1 if the signs of a and b are alike and +1 if they are different. [8]

OR

Q2) a) An alalysis of monthly wages paid to the workers of two firms A and B belonging to the same industry give the following results: [10]

\bigtriangledown	Firm A	Firm B
Number of workers	500	600
Average daily wage	Rs. 186.00	Rs. 175.00
Variance of		6 6
distribution of wages	81	100

- i) Which firm, A or B, has a larger wage bill?
- ii) In which firm, A or B, is there greater variability in individual wages?
- iii) Calculate (a) the average daily wage, and (b) the variance of the distrubution of wages of all the workers in the firm is A and B taken together.

[10]

[Max. Marks: 70

- In a partially destroyed laboratory, record of an analysis of correlation b) data, the following results only are legible: [8] Variance of X=9. Regression equations: 8X–10Y+66=0, 40X–18Y=214. what are:
 - i) the mean values X and Y.
 - the correlation coefficient between X and Y, ii)
 - the standard deviation of Y? iii)
- A Dice is thrown 10 times. If getting an odd number is a sucess. What is *Q3*) a) the probability of getting [5]
 - i) 8 successes
 - ii) at least 6 success?
 - Fit Poisson's distribution to following data and calculate theoretical b) frequencies. [6]

X	<u>60</u>	1	2	3	4
f	122	60	15	2	1

- c) In a Sample of 1000 caes the means of a certain test is 14 and standard deviation is 2.5 assuming the distrubution to be normal find [6]
 - How many students scored between 12 & 15. i)
 - ii) How many scored below 8.

[Given: A(z = 0.8) = 0.2884), A(z = 0.4) = 0.1554), A(z = 2.4) = 0.4918]

OR

A Random variable X with following probability distrubution **04**) a)

	AR	anc	lom	varia	able X wi	h follo	wingp	proba	bility distrubution	ری بر بر
	X		1	2	3 4	5	6	7		X
	P(X))	k	2k	$3k k^2$	k^2+k	$2k^2$	$4k^{2}$		
	Find	1.			X					
	i)	k								
	ii)	P(x >	5)					Nº S?	
	iii)	P(1≤.	$x \le 5$)					
	In a	COI	ntin	uous	distribut	ion der	nsity f	unctio	on of	[6]
	f(x)=	kx^2	$(1 - z)^{-1}$	$(x^3), 0 \le x \le$	≤1.		Æ	60	
	Find	l th	e va	alue o	of			\bigcirc	20	
	i)	k						(D .	
	ii)	Μ	lean					N	,	
	iii)	Va	ariaı	nce			0	X°		
3	27					2	Ø.			
							v			

- b)

[6]

[5925]-327

- MNC company conducted 1000 candidates' aptitude test. The average score is 45 and the standard deviation of score is 25. Assuming normal distribution for the result. [6]
 Find
 - i) The number of candidate whose score exceed 60.
 - ii) The number of candidates whose score lies between 30 & 60. [Given: A(z = 0.6) = 0.2257)]
- Q5) a) In an experiment of pea breeding.the following frequencies of seeds were obtained. [6]

Round Wrinkle	Round	wrinkle	Total
and green and green	and yellow	and yellow 📢	20
222 120	32	150 📿	524

Theory predicts that the frequencies should be in the proportion 8:2:2:1. Examine the correspondence betwen theory and experiment. Given chisquare (0.05,3) = 7.815

- b) The average marks in mathematics of a sample of 100 students was 51 with standard deviation of 6 marks. Could this have a random sample from the population with average marks 50? Given Z α at 5% level of significance = 1.96 [6]
- c) A random sample of 16 newcomers gave a mean of 1.67 m and standard deviation of 0.16 m. Is the mean height of newcomers significantly different from the mena height of students' population of the previous year? Given $t_{0.05, 15} = 2.13$

OR

Q6) a) Following table shows number of books issued on the various days of week from a certain library At 5% level of significance test the null hypothesis that number of books issued in department of the day. [6]

Day	Mon.	Tue.	Wed.	Thurs.	Fri.	Sat.
No. of						
books	120	130	110	115	135	110
issued						

Given: Chi-square value at 5% level of significance for degrees of freedom 5 is 11.071.

b) A random sample of 900 members has mean 3.4 cms. Can it be reasonable regarded as a sample from a large population of mean 3.2 cms and standard deviation 2.3 cms. [6]

Find the F-statistics form the following data: c)

P	1			
Sample	size (n)	Total observation	Sum of squares of	
		$\sum x$	observations	
1	8	9.6	61.52	
2	11	16.5	73.26	

[6]

[9]

[8]

- State & Prove Neyman-Pearson Fundamental Lemma. **Q7**) a)
 - Given the frequency function b)

 $f(x,\theta) =$ $0 \le x$ =0;elsewhere

And that you are testing the null hypothesis $H_0: \theta = 1 \text{ vs} \theta = 2$ by means of a single observed value of x. what would be the size of Type I and Type I error. If you choose the interval

i)
$$0.5 \le x$$

ii) $1 \le x \le 1.5$

Also obtain the power function of the test.

Write short notes on **Q8**) a)

Most powerful test i)

- Uniformly most powerful test ii)
- Advantages and disadvantages of non-parametric tests iii)
- Level of significance iv)
- erera Explain in detail about test for the Equality of means of serveral normal b) [9] populations.

[5925]-327

[8]