S.E. (Artificial Intelligence and Data Science)

STATISTICS
(2019 Pattern) (Semester - IV) (217528) (Theory)
Time: 2½ Hours]
[Max. Marks : 70

Instructions to the candidates :

1) Answer Q. 1 or Q.2, Q. 3 or Q.4, Q. 5 or Q. 6 and Q. 7 or Q.8.
2) Neat diagrams must be drawn wherever necessary.
3) Assume Suitable data, if necessary.
4) Figures to the right indicate full marks.

Q1) a) \searrow Calculate the mean and standard deviation for the following table giving the age distribution of 542 members.

Age (in years)	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
No. of members	3	61	132	153	140	51	2

b) In a partially destroyed iaboratory, record of an analysis of correlation data, the following results only are legible : Variance of $\mathrm{X}=9$. Regression equations : $8 \mathrm{X}-10 \mathrm{Y}+66=\rho, 40 \mathrm{X}-18 \mathrm{Y}=214$. What are :
i) the mean values X and Y,
ii) the correlation coefficient between X and Y , and
iii) the standard deviation of Y?

OR
Q2) a) For 10 randomly selected observations the following data were recorded

Observation no :	1	2	3	4	5	6	7	8	9	10
Observation hrs. (X)	1	1	2	2	3	3	4	5	6	7
Additional units (Y)	2	7	7	10	8	12	10	14	11	14

Determine the coefficient of regression and regression equation using the non-linear form $Y=a+b_{1} X+b_{2} X^{2}$.
b）Variables X and Y have the joint p．d．fogiven by ：
$\mathrm{F}(x, y)=\frac{1}{3}(x+y) ; 0 \leq x \leq 1,0 \leq y \leq 2$
Find
i）$\quad \mathrm{r}(\mathrm{X}, \mathrm{Y})$ ，
ii）The two li＠s of regression，and
iii）The tworegression curves for the means

Q3）a）Assumectrat on an average number out of 15 called between 2pm to 3pm on week days is busy．What is the probability that 6 randomly selectedtelephone numbers called
i）Not more than 3 busy
ii）Atleast 3 busy
b）If the probability that an individual suffers a badeeaction from certain injection is 0.001 ．Determine the probability out of 2000 people，by using poisson＇s distribution
Di）Exactly 3
ii）More than 1 will suffer a bad reactign
c）In a Sample of 1000 cases the means $\wp \mathrm{f} /$ a certain test is 14 and standard deviation is 2.5 ．Assuming the distribution to be normal find
i）How many students scored between 12 \＆ 15.
ii）How many scored below／ 8 ．
［Given ： $\mathrm{A}(\mathrm{z}=0.8)=0.2881, \mathrm{~A}(\mathrm{z}=0.4)=0.1554), \mathrm{A}(\mathrm{z}=2.4)=0.4918$ ］ OR
Q4）a）A Random variable X wit⿴囗十⺝ following probability distribution

X	1	0	3	4	5
$\mathrm{P}(X)$	k	\ldots	$2 k$	$2 k$	k

Find
i）k
ii） $\mathrm{P}(x \geq 2)$
iii） $\mathrm{P}(x<3)$
iv） $\mathrm{P}(2 \leq x \leq 3)$
v）$\quad \mathrm{P}(x \geq 3)$
b）In a continuous distribution density function
$f(x)=k x(2-x), 0<x<2$ ．
Find the value of
i）k
ii）Meạ
iii）Variance
c) For a normal distribution when mean $=1$, standard deviation $=4$, find the probabilities of the following intervals:
i) $3.43 \leq x \leq 6.19$
ii) $-1.43 \leq x \leq 6.19$
[Given : $\mathrm{A}(\mathrm{z}=0.81)=0.2910, \mathcal{A}(z=1.73)=0.4582$]
Q5) a) The following table givesthe number of accidents that took place in an industry duringratious days of the week. Test if accidents are uniformly distributed over the week.

Days	Mon	Tue	Web	Thur	Fri	Sat
No. of accidents	14	18	12	11	15	14

Given chi-square ${ }_{0.05,5}=11.09$.
b) A norpal population has mean 6.8 and standard deviation 1.5. A sample of 400 members gave a mean of 6.75 . Is the differencesignificant? $Z \alpha=1.96$ at 5% level of significance.
c) Suppose that sweets are sold in packages of fixed weight of contents. Theprocedure of the packages is interested intesting the average weight offcontent in packages in 1 kg . Sumrof squares of deviations from mean of 12 samples is 0.011967 . Using above data should we conclude the average. Given $\overline{\mathrm{X}}=0.9883, \mathrm{t}_{0.05,211}=2.201$.

Q6) a) A set of five similar coins is Rossed 210 times and the result is given in the following table.

No. of heads	0	1	2,	3	4	5
Frequency	2	5	20	60	100	31

Use chi-square test to test the hypothesis that data follows a binonial distribution (chi-square $=11.07$ at 5% level of significance)
b) From the given datadelow, Intelligence tests of two groups of boys and girls gave the folvowing results. Examine the differenge in significance. Given $\mathrm{Z} \lambda=1.96$ at 5% level of significance.

	Mean	Standard deviation	Size
Girls	70	10	70
Boys	75	11	110

c) In two independent samples of size 8 and 10 , the sum of squares of deviations of sample values from the respectivésample means were 84.4 and 102.6. Test whether the difference of variances of the population is significant or not. Given $\mathrm{F}_{0.05}=3.29$ at d.f. $(7,9)$.

Q7) a) If $x \geq 1$ is the critical region fortesting $\Theta_{0}: \theta=2$ against the alternative $\theta=1$ on the basis of the single observation from the population. $f(x, \theta)=\theta \mathrm{e}^{-\theta x}, 0<c_{x}^{\prime}<\infty$, obtain the values of type I, type II error also find powerof function.
b) State \& Prove Neyman-Peason lemma for testing a simple hypothesis against a simple alternative hypothesis.

Q8) a) Write short note on:
i) Population ańd sample
ii) Type I and Type II error
iii) Critieal region
iv) Power of test
b) Let $X_{1}, X_{2} \ldots X_{n}$ be random sample of size n from a normal distribution $N\left(\mu, \sigma^{2}\right)$ where μ and σ^{2} both are unknown. Show that LRT used to test $H_{0}^{\prime}: \mu=\mu_{0}$, vs $H_{1}: \mu \neq \mu_{0}, 0<\sigma^{2} \leqslant \infty$ is uised t-test.

Explain in detail the test for the meanof normal population.

