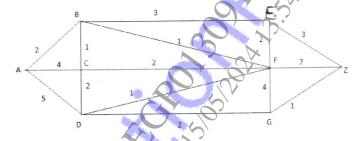
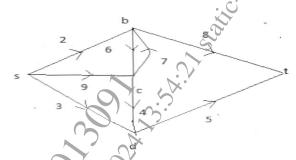

Lotal No. at Chiagtions • XI			
Total No. of Questions: 8] SEAT No.:			
PB3633 [6261]-40 [Total N	No. of Pages :4		
S.E. (Computer Engg.) (Artificial Intelligence & Data Scient	nce Engg.)		
(Computer Science & Design Engg.)			
DISCRETE MATHEMATICS			
(2019 Pattern) (Semester - III) (210241)			
Time: 2½ Hours] [Mo	ax. Marks : 70		
1) Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.			
2) Neat diagrams must be drawn whenever necessary.3) Figures to the right indicates full marks.			
4) Assume suitable data if necessary.			
Q1) a) From a group of 7 men and 6 women, five persons are to be	be selected to		
from a committee so that at least 3 men are there on the co			
how many ways can it be done?	[6]		
b) How many 3-digit numbers can be formed from the digits 2	2,3,5,6,7 and		
9, which are divisible by 5 and none of the digits is repeate	ed? [6]		
c) How many 6-digit odd numbers greater than 6,00,000 ca	an be formed		
from the digits 5,6,7,8,9, and 0	[6]		
i) If repetition is allowed.			
ii) If repitition is not allowed			
6.			
OR			
Q2) a) In how many different ways can the letters of the word 'C	OPTICAL' be		
arranged so that the vowels always come together	[6]		
b) If a committee has eight members.	[6]		
i) How many way can the committee members be seated	a in a row?		
ii) How many way can the committee select a president, vi	ice-precident		
and secretary			
c) In a certain country, the car number plate is formed by 4 di	igits from the		
digits 1,2,3,4,5,6,7,8 and 9 followed by 3 letters from the al			
many number plates can be formed if neither the digits nor t			
repeated?	[6]		
Ø.*	P.T.O.		



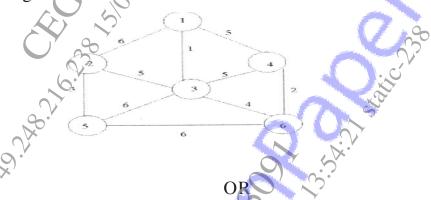
List and explain the necessary and sufficient conditions for Hamiltonian b) and eulerian path with suitable examples. [5]

Use dijkstras algorithm to find the shortes path between A and Z in **Q4**) a) [7]

- Draw a complete bipartite graph on 2 and 4 vertices K2,4 and 2 and 3 b) vertices K2,3.
- [5] Under What condition $K_{m,n}$ will have eulerian circuit c)


Define following terms **Q5**) a)

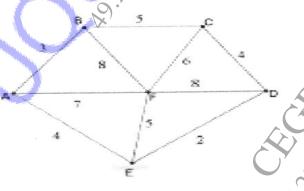
[6]


[7]

- Level of a tree i)
- Height of a tree ii)
- Fundamental circuit iii)

b) Use labeling procedure to find a maximum flow in the transport network given in the following figure. Determine the corresponding minimum cut.[6]

c) Construct Minimal spanning tree for the following graphs using prims algorithm [6]



Q6) a) Define following terms

[6]

- i) Forest
- ii) Fundamental cutsets
- iii) Game tree

b) Construct Minimal spanning tree of the following graphs using kruskals algorithm [6]

c) Construct an optimal tree for 10,11,14,21,16,18 using Huffman conding

Q7) a)	Define:	6]
	i) Cyclic group	•
	ii) Abelian group	4
	iii) Cosets	
b)	Let $Z_n = \{0, 1, 2,, n-1\}$. Construct the multiplication table for n=6.	Is
	$(Z_n,*)$ an abelian group. Where* is a binary operation on Z_n such that	at
	a*b = remainder of a*b divided by n [6	6]
c)	Let (A,*) be a group, show that (A,*) is an abelian group in	ff
	$a^2(*b^*) = (a*b)^2$	5]

OR

Q8) a) Define:

[6]

- Group codes
- ii) Subgroup
- iii) Integral domain
- b) Let (A,*) be an algebraic system where * is a binary operation such that for any a,b, belongs to A, a*b=a [6]
 - i) Show that * is an associated operation
 - ii) Can * ever be a communtative operation?
- Prove that the set Z of all integers with binary operation * defined by a*b = a+b+1 such that for all a,b belonging to Z is an abelian group[5]

લ્ય લ્ય લ્ય

[6261]-40