S.E. (Computer/A.I.\& D.S./C.S \& D.E.)
 DISCRETEMATHEMATICS
 (2019 Pattera) (Semester-III)(210241)

Time : $2^{1 ⁄ 2}$ Hours]
[Max. Marks: 70
Instructions to the camdidates:

1) Answer Q. 1 or Q. $2, Q .3$ or Q.4, Q. 5 or Q.6, Q. 7 or Q.8.
2) Neat diagram must be drawn whenever necessary.
3) Figures to the right indicate full marks.
4) Assume suitable data if necessary.

Q1) a) Fromagroup of 7 men and 6 women, five persons are to be selected to form a committee so that at least 3 men are there on the committee. In how many ways can it be done?
b) \searrow Suppose repetitions are permitted:
i) How many ways three-digit no. can be formed from six digits $2,3,4,5,7$ and 9 ?
ii) How many are multiple of 10 ?
iii How many are exen
c) What is the coefficient of x^{09} in the expansion of $(2-x)^{19}$?

Q2) a) Five pencils and 5 pensfare to be arranged in a row. In how manydyays they can be arrangedif
i) All pencils múst be arranged together
ii) No two pencils should be kept together and
iii) One pen and one pencil must be arranged together?
b) Find the number of permutations that can be made out of the letters [6]
i) Mississippi
ii) Assassination
c) How many automobile license plates can be made if each plate contains two different letters followed by three different digits. Solve the problem if the first digit can not be zero.

Q3) a) Find the shortest path between a - z for the given graph using Dijkstra's algorithm

b) Explain the terms adjacency matrix and incidence matrix.
c) Define the following terms with suitable example.
i) Factor of graph
ii). Weighted Graph
iii) Bipartite graph

Q4) a) Draw all isomorphic graph on vertices 2 and 3, also draw all non-isomorphic graphs on 2,3 and 4 vertices.
b) Explain Edge connedtivity and Vertex Connectivity with suitable example
c) Is it possible to construct a graph with 12 nodes such that 2 of the nodes have degree 3 and theremaining have degree 4 .

Q5) a) Construct a binary tree from given inorder and preorder traversals:

(Inorder:b dfhkm ptvm

Preorder: bfdkhvwtm
b) Define following terms
i) Forest
ii) Fundamental cutsets
iii) Game tree
c) Use Kruskal's algorithm to find theminnimum spanning tree for the connected weighted graph G as shownin fig. below

Q6) a) Find maximum flow in the transport networkasing labeling procedure. a Determine the corresponding min-eyt.
(b) Construct an optimal binary tree for the set of weights as $\{8,9,10,11,13,15,22\}$. Find the weight of an optimal/ree. Also assign the prefix codes and write the code words.
c) What is Minimum Spanning tree? Explain brieflysteps involved in finding MST in Prim's Algorithm?

Q7) a) Define with examples:
i) Groupoid
ii) Semigroup
iii) Monoid
iv) Abelian group.
v) Subgroup
b) Let (A, x) be monoid such that for every $x \in \mathrm{~A}, x * x=\mathrm{e}$ wheree is the identity element. Show that (A,*) is an abelian group.

Q8) a) Define (with examples:
i) Properties of binary operation
ji) Ring with unity
iii) Fields.
iv) Integral Domain
b) Find the number of codes generated by the given check matric H. Also find all code words.

1	1	0	1	0	0
0	1	1	0	0	0
1	0	1	0	0	1

